Susza w obecnych czasach jest poważnym problemem cywilizacyjnym, uderzającym bezpośrednio w naszą działalność gospodarczą, głównie w sektorach: energetycznym, rolniczym i przemysłowym. Również jej ujemny wpływ coraz bardziej zaznacza się w ekosystemach lądowych.
Suszom najczęściej towarzyszą fale upałów, a także, gdy ich okres się wydłuża, dają o sobie znać wielkoskalowe pożary, o których powiemy sobie w dalszej części książki.
—-
Bramha Dutt Vishwakarma z Uczelni Nauk Geograficznych na Uniwersytecie w Bristolu, w Wielkiej Brytanii, w swojej autorskiej pracy pisze, że w 2019 roku jedna czwarta światowej populacji była dotknięta poważnym niedoborem wody przez instytut zasobów wodnych 1. A jak wynika z wcześniejszych prac na ten temat, do 2050 roku przewiduje się, że dostępu do wody nie będzie mieć połowa ludzkości, przy kontynuacji obecnych wysokich emisji gazów cieplarnianych. Te wszystkie prognozy na przyszłość oparte są na coraz dokładniejszych modelach, dzięki czemu potrafimy zrozumieć coraz lepiej współczesną czasoprzestrzenną charakterystykę susz. Dlatego liczne grupy badawcze badają systematycznie trwające i przeszłe zjawiska suszy, aby uzyskać coraz świeższe, nowe informacje na ich temat.
Ciekawą sprawą jest to jak przebiegają badania satelitarne pomiarów wód gruntowych, czyli zmiany magazynowania wody w gruncie. Badania takie przeprowadziła misja produktów satelitarnych GRACE, które też mierzą zmiany w pokrywach lodowych Antarktydy i Grenlandii, w poziomie globalnych wód oceanicznych. Ponadto, przeprowadzane są badania mniej związane z klimatem, bo z pomiarami skał i gruntów pod względem trzęsień ziemi.
Mamy różne rodzaje susz, które charakteryzują się różnymi zmiennymi hydrologicznymi. I na przykład:
– suszę meteorologiczną ocenia się na podstawie opadów,
– suszę hydrologiczną ocenia się na podstawie spływu lub poziomu zbiornika,
– suszę rolniczą ocenia się na podstawie wilgotności gleby
Do badania suszy potrzebne są długie nieprzerwane obserwacje hydrologiczne.
—-
Rys.1. Dane NASA GRACE pokazują, że ziemia w dużej części Doliny Środkowej Kalifornii tonie w wyniku wydobycia wód gruntowych (The New Republic, 2015).
—-
——–
Nie ulega wątpliwości, że kiedy mamy do czynienia z falami upałów, często też im towarzyszą właśnie susze. I to coraz częściej o wymiarze ekstremalnym, tak samo pod względem wzrostu częstotliwości, intensywności oraz długości, a także zasięgu, zarówno pod względem godzin w ciągu dnia, jak i liczby dni, przeważnie w sezonie letnim, ale i coraz częściej mają i one miejsce w sezonie wiosennym, jak np. w 2018 roku.
Jedną z prac przedstawiających układ synergiczny, omawianych wcześniej w książce fal upałów i teraz zaprezentowanych susz, jest praca zaprezentowana przez zespół naukowy, na którego czele stał Mohammad Reza Alizadeh, doktorant pod kierunkiem prof. Jana Adamowskiego na Wydziale Inżynierii Biozasobów na Uniwersytecie McGill w Kanadzie 2.
Naukowcy zidentyfikowali na obszarze Stanów Zjednoczonych dwa mechanizmy podczas samointensyfikacji i samorozprzestrzeniania się zdarzeń gorąco-suchych, a więc jednocześnie fal upałów i susz, gdzie ich częstotliwość, intensyfikacja i poszerzanie zasięgów potęguje tworzenie się sprzężeń zwrotnych lądowej atmosfery. Podczas występowania tych zdarzeń, wzmocniony efekt jednoczesnych fal upałów i susz ma wpływ na większe parowanie gleb, co powoduje, że malejący ich poziom wilgotności wzmacnia intensywnie wzrost temperatury powietrza, co z kolei prowadzi do znacznego ogrzewania atmosfery i do poważnego wysychania, zarówno wód powierzchniowych i gruntowych, jak i roślin.
Współautor badania prof. Mojtaba Sadegh, badacz ekstremów klimatycznych z Uniwersytetu Stanowego Boise (Boise State University) dla Carbon Brief tak powiedział 3:
Samointensyfikacja oznacza, że susze i fale upałów nasilają się nawzajem; suchość prowadzi do większej ilości ciepła – a więcej ciepła powoduje więcej suchości. Samorozprzestrzenianie się odnosi się do przemieszczania się suchości i ciepła z jednego regionu do drugiego.
Zdarzenia sucho-gorące oddziałują bardzo ujemnie, zarówno na lasy naturalne i gospodarcze, jak i na rolnictwo oraz energetykę w danym regionie, w którym mają one miejsce. Ich długotrwała obecność bardzo często stymuluje inicjację pożarów wielkoskalowych, których tematyka będzie szerzej omawiana w następnej kolejności w książce.
Mojtaba Sadegh wyjaśnił w tym samym serwisie:
Jednoczesne susze i fale upałów są najbardziej szkodliwymi stresorami dla systemu rolniczego. Jeśli jest gorąco, potrzeba więcej wody do nawadniania, a jeśli jest sucho, wody do tego nie ma. Trzy takie zdarzenia w latach 2011–2013 w USA spowodowały straty w rolnictwie o wartości ponad 60 miliardów dolarów.
Złożone sucho-gorące wydarzenia są również bardzo szkodliwe dla lasów i mogą powodować śmiertelność drzew na dużą skalę, taką jak zaobserwowano w górach Sierra Nevada w Kalifornii w latach 2014-2017.
Naukowcy skupili się na dokładnej analizie przestrzennej obszarów Stanów Zjednoczonych. I zwrócili uwagę, że te zdarzenia są najczęstsze w zachodniej części kraju oraz w północno-wschodnich i południowo-wschodnich rejonach. W tym celu przestudiowali ponad stuletnie pomiary temperatury, dokładniej okres 1896-2017, co mało naukowców przeprowadzało, i co było powodem niedokładnemu przyjrzeniu się wielkiej suszy Dust Bowl w latach 30 XX wieku, którą ci naukowcy również zaliczyli do zdarzenia gorąco-suchego.
—-
Fot.1. Niepowodzenie upraw z powodu suszy, Nebraska, USA. Źródło: Inga Spence / Alamy Stock Photo.
—-
Nieparametryczna analiza Manna-Kendalla, na grafice poniżej, pokazuje statystycznie istotny trend wzrostowy średniej rocznej temperatury w latach 1896-2017 w większości przyległych obszarów Stanów Zjednoczonych, nie licząc Alaski i Hawajów (CONUS – Contiguous United States), z wyjątkiem części południowo-wschodniej, na wschód od południowych Wielkich Równin i południowej część Środkowego Zachodu.
—-
Rys.2. Nieparametryczna analiza trendu Manna-Kendalla.
Zacienione na czerwono obszary pokazują statystycznie istotny wzrost (na poziomie 5%) okresu powrotu ( A ) ekstremów suchych, ( B ) ekstremów gorących i ( C ) równoczesnych ekstremów suchych i gorących w całym CONUS w ciągu ostatnich 122 lat ( 1896–2017) w skali rocznej. Na rysunku pokazano również ułamek powierzchni w każdym regionie i cały CONUS z istotnymi trendami (Mohammad Reza Alizadeh i inni, 2020).
—-
Częstotliwość złożonych ekstremalnych zdarzeń sucho-gorących zaczyna wzrastać w całym CONUS, trend, który jest znaczący na poziomie 5% w zachodnich Stanach Zjednoczonych,a także w części północno-wschodnich i południowo-wschodnich Stanów Zjednoczonych.
Montaba Sadegh w serwisie Carbon Brief podsumował temat:
Pokazujemy, że jednoczesne susze i fale upałów rozszerzają się przestrzennie w alarmującym tempie, zwiększając prawdopodobieństwo wystąpienia ekstremów w skali kontynentalnej.
——-
Michael Goulden z Wydziału Nauki Systemu Ziemi w Irvine i Roger Bales z Instytutu Badawczego Sierra Nevada – obaj z Uniwersytetu Kalifornijskiego, powiedzieli, że w latach 2012-2015 w stanie USA w Kalifornii mieliśmy do czynienia z jednoczesnym okresem skrajnie rzadkich opadów deszczu ze wzmocnieniem temperatury powietrza oraz z wymieraniem wielu drzew. Najmocniej ucierpiały drzewa w lasach iglastych, które są mniej odporne na takie ekstrema pogodowe niż liściaste 4.
Naukowcy za pomocą obserwacji terenowych i teledetekcyjnych omówili przestrzenne i czasowe wzorce wymierania drzew oraz deficytu wilgoci podczas suszy w Kalifornii.
Susze to przewaga ewapotranspiracji nad opadami. I z tego też wynika, że tak samo się oblicza ten parametr jak opady deszczu czy śniegu z atmosfery na glebę, tylko w kontekście ubytku wody z tejże gleby do atmosfery. Skumulowana ewapotranspiracja podczas wielkiej 4-letniej suszy 2012-2015 w Kalifornii wyniosła 1500 mm. A poziom wilgotności w glebie obniżył się w tym samym czasie do głębokości 5-15 metrów. Umarło wówczas wiele drzew. Zwłaszcza ucierpiały iglaste, które są bardziej podatne na destrukcyjny wpływ susz, zwłaszcza połączonych z falami upałów, w szczególności ekstremalnych.
W badanym okresie czasu wymarło około 55% drzew.
——–
Naukowcy z Niemiec i Czech pod kierownictwem Vittala Hari z Centrum Badań Środowiskowych UFZ-Helmholtz w Lipsku, wykorzystali dane sięgające roku 1766, aby stwierdzić, że dwuletnia susza 2018-2019 była największą i najcięższą zarejestrowaną w historii suszą, od co najmniej 250 lat 5.
Oszacowali oni, że w drugiej połowie XXI wieku liczba ekstremalnych dwuletnich susz wzrośnie aż siedmiokrotnie, gdy będzie kontynuowany scenariusz najgorszych emisji „biznes jak zwykle”. Miałoby to drastycznie ujemny wpływ na 40 milionów hektarów upraw rolnych, czyli w porównaniu z dniem dzisiejszym, byłby to ubytek aż 60% wszystkich ziem rolnych na świecie.
Symulacje komputerowe pod względem umiarkowanych emisji miałyby wpływ na straty rolne o połowę mniej.
Naukowcy napisali w swojej pracy, że dwuletni okres suszy stanowi znacznie poważniejsze zagrożenie dla roślinności aniżeli jednoletnie z poprzednich lat, ponieważ ziemia nie może tak szybko zregenerować się po jednym roku suszy.
Ponadto badacze stwierdzili, że około jedna piąta regionu Europy Środkowej odnotowała słaby stan roślinności w ciągu ostatnich dwóch lat 2018-2019.
W badaniu tym zdefiniowano Europę Środkową jako obejmującą część Niemiec, Francji, Polski, Szwajcarii, Włoch, Austrii, a także Czechy, Belgię, Słowenię, Węgry, Słowację. Stwierdzono, że w tym regionie Europy ponad 34 procent całkowitej powierzchni gruntów jest intensywnie wykorzystywane do celów rolniczych.
—-
Rys.3. Anomalie wskaźnika zdrowia roślinności (VHI – vegetation health index) w latach 2003, 2018 i 2019. ( a , b , c ) Anomalie średniej temperatury (°C ≤ 30) w okresie letnim (czerwiec–sierpień) dla roku 2003, 2018 i 2019 na podstawie klimatologii z lat 1980–2010 oraz ( d , e , f ) odpowiadające im anomalie opadów (%). ( g , h , i ) Stan roślinności pod względem VHI odpowiednio w latach 2003, 2018 i 2019.
( j ) Roczny rozwój okresu letniego, procent powierzchni o słabej kondycji roślinności (tj. VHI °C ≤ 30), oszacowany w regionie środkowoeuropejskim (oznaczonym czarnym prostokątem na panelu g) w latach 2000–2019. Gruba czarna kreskowana linia przedstawia roczną średnią tygodniową VHI w miesiącach letnich, a różowe oznaczenia reprezentują odpowiednio 95% poziom ufności w oparciu o rozkład próby średniej. W latach 2003, 2015, 2018 i 2019 nastąpiło zaburzenie kondycji roślinności, które objęło ponad 20% regionu środkowoeuropejskiego. Obszar zacieniony na szaro podkreśla lata 2018 i 2019, podczas których słaba kondycja roślinności utrzymuje się na ponad 20% obszaru środkowoeuropejskiego, kolejno przez 2 lata.
k) Roczne anomalie opadów i temperatury w okresie letnim oszacowane w regionie Europy Środkowej w ciągu 254 lat. Czerwone kropki oznaczają trzy wyjątkowe lata 2003, 2018 i 2019, w których anomalie średniej temperatury latem nad Europą Środkową osiągnęły rekordowo ekstremalne warunki przekraczające 2°C ; a anomalie opadów wykazują deficyt przekraczający 20%. Mapy na rysunku są generowane przy użyciu Pythona w wersji 3.7.3 (https://www.python.org/search/?q=Python+3.7.3) (Vittal Hari i inni, 2020).
Naukowcy dalej opisują, że gdy w lecie 2003 roku wzrost temperatury był bardziej skoncentrowany w Europie środkowej i południowej, lato 2018 roku charakteryzowało się nieprawidłowym wzrostem w Europie środkowej i północno-wschodniej. Mimo wszystko w obu danych okresach, wzrost temperatury i zmniejszenie opadów deszczu było najsilniejsze w regionie środkowoeuropejskim (rys.3. d–f), co w końcu doprowadziło do przedłużających się ekstremalnych warunków suszy gdzie ucierpiało mocno rolnictwo.
——-
Podobne badanie przeprowadzone przez zespół naukowy dr Any Bastos z Wydziału Geografii, Uniwersytetu Ludwika Maksymiliana w Monachium – przez ówczesną kierowniczkę grupy w Instytucie Biogeochemii im. Maxa Plancka w Jenie, w Niemczech, polegało na porównaniu ekstremalnych fal upałów 2018 roku z minionymi podobnymi zdarzeniami w 2010 i 2003 roku 6.
Naukowcy odkryli, że złożone zjawisko ekstremalnych fal upałów i susz w 2018 roku różniło się wyraźnie od tych z 2010 i 2003 roku, tym, że zarówno fala ciepła, jak i susza w Europie Środkowej miały już miejsce w okresie wiosennym.
Dr Ana Bastos powiedziała w serwisie Carbon Brief 7:
Warunki wiosenne doprowadziły do wzmocnienia fotosyntezy na początku sezonu wegetacyjnego, ale kosztem silnego wyczerpania gleby i wody. Na zdominowanych przez uprawy obszarach w Europie Środkowej zwiększony wzrost wiosną sprawił, że ekosystemy były bardziej podatne na suszę latem i spowodował on załamanie fotosyntezy.
Warto zaznaczyć, że dodatnie anomalie temperatury były znacznie większe w latach 2003 i 2010 niż w 2018 roku, gdyż ogólnie średnia temperatura powierzchni Ziemi czy w mniejszej skali kontynentu Europy, w pierwszej dekadzie XXI wieku była niższa niż pod koniec drugiej dekady.
Z tego co się jeszcze dowiadujemy z powyższej pracy, to jest to, że rekordowo wysokie temperatury i promieniowanie oraz rekordowo niskie opady w sezonie letnim ograniczały się głównie do Europy Środkowej, jak widać na poniższym rysunku. Jednak w porównaniu z innymi latami w 40-letnim zapisie, rok 2018 zarejestrował najsilniejsze przejście między mokrą zimą/wiosną a suchym latem/jesienią w skali kontynentalnej.
Mapy powyżej pokazują, jak była ciepła i słoneczna wiosna 2018 roku na dużej części kontynentu w porównaniu z innymi latami, w których występowały przede wszystkim fale upałów w okresie letnim. Z kolei w 2018 roku, w niektórych częściach Europy w porze wiosennej wystąpiły również niezwykle ogromne deficyty opadów, jednak nie były one jednolite na całym kontynencie.
Za pomocą 11 modeli naukowcy przeprowadzili symulacje wegetacji roślin i porównali trzy okresy wiosenno-letnie 2003, 2010 i 2018. Zaobserwowali wówczas duży przyrost roślinności w porze wiosennej ze względu na większe pochłanianie dwutlenku węgla przez rośliny. Jednak utrzymujący się dłuższy wzrost obniżonych opadów deszczu oraz wysokiej temperatury spowodował powstanie ekstremalnego zdarzenia gorąco-suchego w 2018 roku, o którym już była mowa wcześniej w książce. Z kolei zdarzenia wiosenne 2003 i 2010 nie były pod wpływem fal upałów, ale letnie już tak i to z dużą intensywnością.
—-
Rys.4. Średnia temperatura (na górze), opady (w środku) i promieniowanie słoneczne (na dole) w Europie w miesiącach wiosennych: 2003 (po lewej), 2010 (pośrodku) i 2018 (po prawej). Kolor czerwony oznacza ponadprzeciętne temperatury lub deficyty opadów, natomiast żółty oznacza ponadprzeciętne promieniowanie słoneczne. (Ana Bastos i inni, 2020)
—-
Dr Ana Bastos wyjaśnia w tym samym artykule dla Carbon Brief:
Na zdominowanych przez uprawy obszarach w Europie Środkowej zwiększony wzrost wiosną sprawił, że ekosystemy były bardziej podatne na suszę latem i spowodował załamanie fotosyntezy latem.
A więc, wniosek z tego wypływa następujący, że wraz z rozpoczęciem lata w 2018 roku i cały czas trwającym od wiosny okresem suszy, wysychające gleby oraz rośliny uwalniały duże ilości dwutlenku węgla do atmosfery doprowadzając do jeszcze większego wzrostu temperatury w regionie środkowej Europy oraz potencjalnie bardziej zwiększonej suszy.
Naukowcy też zauważyli, że regiony Europy takie jak Skandynawia, są silnie zalesione i znacznie mniej odczuły wtedy wpływ wzrostu temperatury globalnej i suszy niż bardziej wylesione i o charakterze rolniczym regiony środkowej Europy.
——-
Kolejne badanie koncentruje się już na wcześniejszym wykryciu wśród szumu zmienności naturalnych, sygnału zmian klimatu, dokładniej wymuszenia gazów cieplarnianych, których skutkiem jest właśnie nasilenie się suszy w XX wieku.
Kate Marvel, z Instytutu Badań Kosmosu im. Goddarda przy NASA (NASA GISS – NASA Goddard Institute for Space Studies) oraz z Wydziału Fizyki Stosowanej i Matematyki Stosowanej, na Uniwersytecie Columbia w Nowym Jorku, jako główna autorka pracy, wraz ze swoimi współpracownikami, przedstawiła dane występowania susz za pomocą modeli klimatycznych, obserwacji i rekonstrukcji klimatycznych (badań pośrednich – tzw. proxies) 8.
Za pomocą wskaźnika nasilenia suszy Palmera (PDSI – Palmer Drought Severity Index), który również uwzględnia wpływ ocieplenia pod kątem pomiarów opadów deszczu i ewapotranspiracji, naukowcy zbadali wilgotność gleby posługując się metodą rekonstrukcji klimatu za pomocą zapisu słojów drzew w czasie 600-900 lat.
Kate Marvel dla serwisu Carbon Brief powiedziała następująco 9:
Słoje drzew dają nam obraz warunków w letnim okresie wegetacyjnym. Jeśli jest mokry rok z dużą wilgotnością gleby, drzewa rosną bardziej. Jeśli jest suchy rok, rosną mniej. Tak więc grubość poszczególnych słojów mierzy wilgotność gleby w danym roku.
—-
Rys.5. Siła związku między szacunkami PDSI na podstawie danych obserwacyjnych – rekonstrukcji słojów drzew (zielony) i zbiorów danych meteorologicznych (CRU, ciemnoniebieski; DAI, jasnoniebieski) – a „odciskiem palca” zmian klimatu. Na osi y liczba powyżej zera wskazuje na trend pozytywny, a liczba poniżej zera na trend negatywny. Wyniki są pokazane dla trzech okresów: 1900-49 (na górze), 1950-75 (w środku) i 1980-2017 (na dole). Na dolnym wykresie rekonstrukcje słojów drzew zastąpiono nowoczesnymi zestawami danych dotyczących wilgotności gleby na powierzchni (pomarańczowy) i korzeni roślin (czerwony). Źródło: Kate Marvel i in. (2019)
—-
Zastosowując tzw. technikę „odcisków palców”, polegającą na wykryciu sygnału zmian klimatu, naukowcy porównali zapisy słojów drzew i meteorologiczne z modelowymi symulacjami klimatu w okresie 1900-2100. Symulacje te przedstawiły szereg czynników, które mogą wpływać na ryzyko powstawania i nasilenia suszy w danym okresie czasu. Takimi czynnikami stymulującymi mogą być też emisje aeorozoli z erupcji wulkanów, jak i przemysłowe. Aby uwzględnić wpływ spowodowanych przez człowieka zmian klimatycznych, naukowcy wykorzystali scenariusz wysokiej emisji gazów cieplarnianych znany jako RCP8.5.
Jak widać z danych zestawów meteorologicznych, Jednostki Badań Klimatycznych (CRU – Climatic Research Unit) i interfejsu dostępu do danych (DAI – Date Access Interface), okres 1950-1975 zamaskował sygnał wymuszenia gazów cieplarnianych (dodatnich emisji GHG), ale ujawnił sygnał wymuszenia aerozoli (ujemnych emisji GHG).
Na powyższym wykresie badacze przedstawili analizę porównawczą okresów 1900-1949 (na górze), 1950-1975 (w środku) i 1980-2017 (na dole) za pomocą rekonstrukcji klimatycznych, obserwacji meteorologicznych i symulacji modelowych.
Od początku XX wieku do początku lat 80, sygnał antropogenicznych zmian klimatu wymuszających nasilenie częstotliwości, długości, intensywności i zasięgu geograficznego susz, był jeszcze słabo wykrywalny. We wcześniejszych okresach szum w systemie klimatycznym powodowały naturalne zmienności klimatyczne. Świat w tym okresie czasu nie był tak mocno ocieplony, ale mimo to susze już miały miejsce, choć nie były tak silne jak od początku lat 80 do dziś.
Spadkowy zapis słojów drzew w latach 1950-1975, jak widać na wykresie (rys.5.), był spowodowany nasileniem emisji chłodzących klimat aerozoli antropogenicznego pochodzenia oraz większym zachmurzeniem na półkuli północnej, które zmniejszało fotosyntezę drzew, co przyczyniało się do bardziej zaburzonych przyrostów w słojach drzew w latach chłodniejszych od średniej. Jednak w tym okresie czasu na Wielkich Równinach USA w latach 1950-56 i 1962-66 miały miejsce długotrwałe, ale nie ekstremalne susze, dla których jednak sygnał antropogenicznych wymuszeń radiacyjnych nie był jeszcze tak silny jak od lat 80 do dziś. W tym okresie sygnał wymuszeń gazów cieplarnianych został zamaskowany sygnałem wymuszeń aerozoli chłodzących klimat, co też mogło dawać mylące wrażenie, że antropogeniczne zmiany klimatu, w tym ich wpływ na susze, nie ma miejsca.
Z kolei zapisy słojów drzew w latach 1900-1949 i 1980-2017 wyrażnie pokazały ich trend zwyżkowy oraz wyraźniejszy sygnał wymuszeń radiacyjnych na inicjację i nasilenie susz w XX wieku, gdyż sygnał wymuszeń aerozoli nie był tak silny. W pierwszym przypadku, gdyż nie był tak mocno jeszcze uprzemysłowiony świat, a w drugim przypadku, ponieważ ludzkość postanowiła zredukować znacząco emisje chłodzących aerozoli siarczanowych w okresie 1950-1975, co w latach 90 odczuliśmy jako wzmocnienie globalnego ocieplenia.
W pierwszej połowie XX wieku były dwie ekstremalne susze, gdzie oczywiście wpływ na nie miały także naturalne zmienności klimatyczne. Była to słynna przede wszystkim susza Dust Bowl, której zasięg sięgał od stanu Oklahoma w USA do prowincji Saskatchewan w Kanadzie. Ta gigantyczna i największa w historii Ameryki Północnej susza przyszła w trzech falach, w latach: 1934, 1936 i 1939-1940. Właściwie zaczęła się ona nawet już od 1931 roku. Zabiła ona wtedy ponad 5000 Amerykanów i 1100 Kanadyjczyków.
Również podczas drugiej wojny światowej w Chinach w latach 1941-1942, w prowincji Henan zmarło z głodu około 3 milionów ludzi, którym wojsko zabierało żywność dziesiątkowaną przez wiatry, gradobicia i szarańczę. Była to jedna z największych klęsk cywilizacyjnych.
Natomiast w okresie 1980-2017 wraz z wyraźnym sygnałem wymuszeń antropogenicznych gazów cieplarnianych, pojawiło się coraz więcej ekstremalnych susz, zwłaszcza od początku XXI wieku.
W latach 1987-89 na Wielkich Równinach blisko Parku Narodowego Yellowstone susza wraz z falą upałów po raz pierwszy doprowadziły do inicjacji pożarów lasów.
Natomiast w latach 2006-2010 w Syrii potężna susza doprowadziła 1,5 miliona mieszkańców do uchodźstwa z powodu zmian klimatu, które doprowadziły w tym kraju gospodarkę rolną do ruiny.
—-
Referencje:
1. Vishwakarma B D., 2020 ; Monitoring Droughts From GRACE ; Interdisciplinary Climate Studies ; https://www.frontiersin.org/…/fenvs.2020.584690/full
2. Alizadeh M. R. et al., 2020 ; A century of observations reveals increasing likelihood of continental-scale compound dry-hot extremes ; Science Advances ; https://www.science.org/doi/10.1126/sciadv.aaz4571
3. Dunne D., 2020 ; US sees ‘alarming’ increase in combined heatwaves and droughts ; Carbon Brief ; https://www.carbonbrief.org/us-sees-alarming-increase-in…
4. Goulden M. L. et al., 2019 ; California forest die-off linked to multi-year deep soil drying in 2012–2015 drought ; Nature Geoscience ; https://www.nature.com/articles/s41561-019-0388-5
5. Hari V. et al., 2020 ; Increased future occurrences of the exceptional 2018–2019 Central European drought under global Warming ; Scientific Reports ; https://www.nature.com/articles/s41598-020-68872-9
6. Bastos A. et al., 2020 ; Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity ; Science Advances ; https://www.science.org/doi/10.1126/sciadv.aba2724
7. Dunne D., 2020 ; Warm spring worsened Europe’s extreme 2018 summer drought, study says ; Carbon Brief ; https://www.carbonbrief.org/warm-spring-worsened-europes-extreme-2018-summer-drought-study-says/
8. Marvel K. et al., 2019 ; Twentieth-century hydroclimate changes consistent with human influence ; Nature ; https://www.nature.com/articles/s41586-019-1149-8
9. Dunne D., 2019 ; Climate change has influenced global drought risk for ‘more than a century’ ; Carbon Brief ; https://www.carbonbrief.org/climate-change-has-influenced-global-drought-risk-for-more-than-a-century/